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ABSTRACT

The measurement of the 3-D “average propagator”, P(r),
from diffusion-weighted (DW) NMR or MRI data has been
a “holy grail” in materials science and biomedicine, as P(r)
provides detailed microstructural information, particularly
about restriction, without assuming an underlying diffusion
model. While Callaghan proposed a 3-D Fourier transform
relationship between P(r) and the DW signal attenuation,
E(q) [1], using it to measure P(r) from E(q) data is not
currently feasible biologically or clinically, owing to the
staggering amount of DW data required.

To address this problem, we propose that computed
tomography principles can be applied to reconstruct P(r)
from DW signals. Moreover, this reconstruction can be
performed efficiently using many fewer DW E(q) data as
compared to conventional 3-D q-space MRI [1] or Diffusion
Spectrum Imaging (DSI) [2] by employing a priori
information about E(q) and P(r).

1. INTRODUCTION

Q-space nuclear magnetic resonance (q-NMR) is an
experimental and theoretical framework originally developed
by Cory [3] and Callaghan [4] to characterize features of the
displacement distribution of translating spin-labeled
molecules. Specifically, they proposed using a pulsed-
gradient NMR experiment to measure the “average
propagator”, P(r), of spin-labeled molecules directly from
the MR echo using a Fourier transform relationship.

The power and utility of this approach stems from its
ability to characterize random and bulk molecular
displacements in optically turbid media without having to
invoke a specific model of the translational diffusion
process or of the material’s microstructure. In fact, these
can often be inferred from the MR data itself. For instance,
by examining the dependence of the MR signal as a
function of the diffusion time, and of the length scale
probed (as measured by the q vector), one can extract useful
morphological features, particularly in porous media, such
as the pore size and even the size distribution of pores,
tubes, and plates.

Three-dimensional q-space Magnetic Resonance
Imaging (3-D q-space MRI), again proposed by Callaghan
[1, 4], entails combining a q-space NMR experiment within

a conventional MRI. This can be done by performing an
NMR q-space experiment followed by an imaging sequence
(q-space filtering), or actually embedding an NMR
experiment within a conventional MRI sequence. Either
way, a 3-D q-space NMR experiment can be performed
voxel by voxel within an imaging volume [1, 4]. This
imaging modality can provide local information about
material microstructure and microdynamics in
heterogeneous, anisotropic specimen or samples, which are
homogeneous on the length scale of a pixel or voxel.

The potential for 3-D q-space MRI particularly in
biological and clinical applications, is enormous but has yet
to be realized. Assaf et al. have shown differences in features
of the average propagator in neurological disorders, such as
multiple sclerosis (MS) [5]. Another possible application is
to use information provided by the average propagator to
resolve nerve or muscle fiber bundles in regions where such
fibers cross. Because of the recently demonstrated strong
orientational dependence of the q-space data with fiber
angle, there is a suggestion that 3-D q-space imaging could
significantly improve the resolution of fiber orientation
beyond that provided by diffusion tensor MRI [6, 7].

However, there are a number of significant obstacles
that currently preclude the application of 3-D q-space MRI
in vivo. The first is that it is not feasible to satisfy the
“short pulse gradient” approximation in animal and human
MRI systems, because the rapidly switched currents required
to produce such gradients induce electric fields in the body
that would exceed the current FDA threshold for cardiac,
CNS and peripheral nerve stimulation. This short pulse
condition is required for the 3-D Fourier Transform
relationship between the displacement distribution and the
MR signal to be strictly valid. To ameliorate this problem,
one can use longer duration, smaller amplitude magnetic
field gradients. While this precludes measuring the
displacement distribution directly, it still allows us to
measure the average propagator, which is a smoothed
version of this distribution.

The second and more significant obstacle to
performing 3-D q-space MRI is the large number of
diffusion weighted MRI data points required to reconstruct
the average propagator, itself. Using the classical method of
3-D q-space MRI first proposed by Callaghan [1,4] and later
recast as Diffusion Spectrum Imaging (DSI) by Wedeen et
al. [8], the average propagator is obtained from a 3-D IFFT
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of E(q) data that is sampled uniformly over the 3-D q-space.
The thousands of DWI data samples required make this
approach infeasible for routine animal and clinical imaging.
For instance, a recent study of ischemia in rat brain took 56
hours to acquire sufficient q-space data to be able to
reconstruct the average propagator. DSI studies in humans
have been reported to take 6 hours.

To address this burden of long MR scans, several
methods have been proposed to reconstruct particular
features of the average propagator while using a reduced
number of acquisitions. For example, Q-Ball MRI [9] was
introduced to provide an estimate of the radially averaged
propagator or orientational distribution function (ODF).
Other analysis methods have been proposed to try to
reconstruct features of the ODF, including PAS-MRI
[10,11], Generalized Diffusion Tensor MRI (GDTI) [12,13].
All of these methods entail acquiring a high angular
resolution diffusion imaging (HARDI) data set, using a
smaller number (e.g., 256) of DWI acquisitions sampled on
a spherical shell in q-space.

While providing useful information about the
orientation bias of diffusion in tissue and possibly other
anisotropic media, the ODF itself contains only a small part
of the total information content provided by the average
propagator. For instance, from the ODF, one cannot recover
the Gaussian part of the average propagator that provides the
same information provided by diffusion tensor MRI (DTI)
[14], or the statistical features of the average propagator,
including high-order moments.

Our goal here is to estimate the entire average
propagator from MR diffusion weighted data but using a
vastly reduced number of DWIs than is presently required.
This economy is achieved by introducing two new ideas.
One is recasting the estimation of the average propagator
from the MR signal as a problem in computed tomography
(CT). The second is the incorporation of a priori
information in the reconstruction of the average propagator
from DWI data rather than using the brute force 3-D FFT
proposed in [8] for which no a priori information about the
MR experiment or the properties of the functions
themselves. Using these ideas together, we are able to
achieve acceptable reconstructions of the average propagator
in a clinically feasible time period.

Specifically, we show how to recast the estimation of
P ( r ) from E (q ) in each voxel as a tomographic
reconstruction problem. First, we provide a probabilistic
interpretation of 1-D q-space data, E(q), as the Fourier
transform of the marginal distribution of P(r) obtained
along the same direction in displacement space. This
analogy suggests an alternative sampling scheme of 3-D q-
space MR data by acquiring several 1-D acquisitions of E(q)
data along different rays in q-space. Then, by applying a
priori information about the properties of P(r) and E(q), we
are able to constrain the reconstruction of P(r), allowing us
to use a limited number of “views” or projections of P(r)
than currently required. In this case, the inversion of P(r)

from E(q) data is performed iteratively with a scheme used
in other tomographic reconstruction applications [15,16].

2. THEORY

Here we offer an alternative probabilistic interpretation
of E(q) obtained along a particular ray in q-space. It is the
1-D Fourier transform of the marginal density of P(r) along
a ray in real space that is parallel to q. To see this, consider
the following:

Suppose we have a function P (x,y,z) and we are
interested in computing its marginal distribution along a
particular direction. For this example, assume that the
direction is n=(x,0,0), pX (x) = P(x,y,z)dy dz�� , for simplicity,

however, the same analysis can be done for a general n,
since one can always rotate the sample so that the desired n
is aligned with the direction above. If the signal measured
in q-space imaging is the Fourier transform of P(x,y,z), then
we have:

E(qx,qy,qz) = P(x,y,z)e� i2� (qxx+qyy+qz z)��� dx dy dz , (1)

where q specifies the strength and direction of the diffusion-
sensitizing gradient and E(qx,qy,qz) is the complex measured
signal. Setting qy = qz = 0, we have:

E(qx,0,0) = P(x,y,z)e� i2�qxx��� dx dy dz

= P(x,y,z)dy dz��( )� e� i2�qxxdx
. (2)

Substituting the expression for pX(x) into (2), we have

E(qx,0,0) = E(qx ) = pX (x)e
� i2�qxxdx� . (3)

But (3) is just the 1-D Fourier transform of pX(x), which
means that pX(x) can be computed by a 1-D inverse Fourier
transform:

pX (x) = E(qx )e
i2�qxxdqx� . (4)

This means that if one wants to compute the profile of the
function P(x,y,z) along a particular direction n=(x,0,0), all
that is needed is the E(qx,0,0) data, from which the profile
pX(x) can be computed from equation (4). Suppose we were
to acquire E(q) data along different rays in q-space. The
FFT of these data would represent marginal distributions of
P(r) obtained along different orientations in displacement
space. A question that arises is whether it is possible to
obtain an accurate estimate of P(r) from a set of marginal
distributions of P(r) obtained along different orientations or
projections?

A key idea proposed here is to recognize that the
determination of P(r) can be viewed as a tomographic
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reconstruction of P(r) from several 1-D projections of it
obtained along different non-collinear directions. The
conventional approach to calculate P(r) by performing a 3-D
FFT of uniformly sampled E(q) data does not naturally
allow one to incorporate additional a priori information that
could improve the accuracy of the estimate of P(r) and
constrain the solution. For example, we know that

• P(r) is everywhere non-negative,
• P(r) is a scalar,
• P(r) has to sum to 1 throughout the volume,
• E(q) has a quadratic dependence on q for small q.

3. ALGORITHM

As shown in Fig. 1, E(q), measured along a ray in q-
space, q , is the 1-D Fourier transform of the marginal
probability density of P(r), pm(r), along the corresponding
ray in displacement space, r. Tomographic reconstruction
can now be applied to the 3-D Radon transform, i.e., to
estimate P(r) from different projections, pm(r). We propose
using the iterative procedure of Gerchberg and Papoulis (G-
P), originally developed for the 2-D [15] and 3-D ray
transforms [16]. While iterating between q- and r-space, all
available a priori information about the properties of E(q),
P(r), and pm(r) can be applied.

To test our modified G-P algorithm, numerical
simulations were performed. In Fig. 2a, the exact P(r) is
shown as an isosurface. In Fig. 2b, only 13x13 polar and
azimuthal angles, and 9 radial points (1,521 total) along
each q vector were sufficient to reconstruct P(r) faithfully.
(Assuming a repetition time of 3 seconds, MR acquisition
time would be approximately 1.25 hours.) Two constraints
were applied during the iterative procedure: positiveness of
P ( r ), and smoothness of E ( q ) (i.e., Tikhonov
regularization). Only four iterations were required to
reconstruct P(r) with RMS error =22%. Next, in Fig.3a, we
reconstructed P(r) from one voxel of experimental DWI data
(excised spinal cord) having 31 directions, each with 16
radial points in q-space [17]. Acquisition time for this data
was 34 minutes. Fig.3b shows the restoration of the full
real part of E(q).

4. DISCUSSION AND CONCLUSION

In considering the novelty of this new approach, it is
important to distinguish it from “tensor tomography” [18]
which the diffusion tensor field is reconstructed from DWI
data by integrating DWI signal intensities along rays within
the imaging volume. Our tomographic reconstruction of
P(r) is performed using E(q) data obtained within each
voxel. Our approach also differs from Q-ball MRI [9,19],
which only attempts to reconstruct orientational features of
P(r) using E(q) data acquired on a sphere in q space. We use
E(q) data obtained throughout q-space to reconstruct the
entire propagator, P(r).
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Fig.1. Correspondence between r-space and q-space.

Fig.2. Exact phantom (a) and its reconstruction (b).

Fig.3. Reconstruction of a) P (r) and b) E (q) from
experimental MRI data using a pig spinal cord phantom.

3-D FFT

E q( ) = pm r( )� e� 2� iq rdr

r q

pm r( ) = p x,y,z( )dA��
3-D Radon Transform

dA

1-D Fourier Transform

q-spacer-space
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